The robustness of the hyperbolic efficiency estimator
نویسندگان
چکیده
In this paper we examine the robustness properties of a specific type of orientation in the context of efficiency measurement using partial frontiers. This so called unconditional hyperbolic α-quantile estimator of efficiency has been recently studied by Wheelock and Wilson (2008) and can be seen as an extension of the in-put/output methodology of partial frontiers that was introduced by Aragon, Daouia and Thomas Agnan (2005). The influence function of this fully non-parametric and unconditional estimator is here derived for a complete multivariate setup (multiple inputs and outputs). Like for the input and output quantile estimators, the hyper-bolic α-quantile estimator is B-robust. The asymptotic variance of this estimator is recovered from the influence function. Some examples are given to assess the relevance of this type of estimator and to show the differences with the input and output α-quantile estimators of efficiency from both a robustness and a statistical efficiency point of view.
منابع مشابه
A Two-Phase Robust Estimation of Process Dispersion Using M-estimator
Parameter estimation is the first step in constructing any control chart. Most estimators of mean and dispersion are sensitive to the presence of outliers. The data may be contaminated by outliers either locally or globally. The exciting robust estimators deal only with global contamination. In this paper a robust estimator for dispersion is proposed to reduce the effect of local contamination ...
متن کاملAsymptotic Properties of some Non-parametric Hyperbolic Efficiency Estimators
A hyperbolic measure of technical efficiency was proposed by Färe et al. (1985) wherein efficiency is measured by the simultaneous maximum, feasible reduction in input quantities and increase in output quantities. In cases where returns to scale are not constant, the non-parametric data envelopment analysis (DEA) estimator of hyperbolic efficiency cannot be written as a linear program; conseque...
متن کاملA Robust Adaptive Observer-Based Time Varying Fault Estimation
This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...
متن کاملبرآورد تابع بقای شرطی زمان شکست بهشرط یک متغیر کمکی زمانمتغیر با مشاهدات سانسورشدهی بازهای
In this paper, we propose an approach for the nonparametric estimation of the conditional survival function of a time to failure‎ ‎given a time-varying covariate under interval-censoring for the failure time. Our strategy consists in‎ ‎modeling the covariate path with a random effects model, ‎as is done in the degradation and joint longitudinal and survival data modeling&lrm...
متن کاملRobust Estimation in Linear Regression Model: the Density Power Divergence Approach
The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 57 شماره
صفحات -
تاریخ انتشار 2013